3-Hydroxy-3-methylglutaryl coenzyme A reductase localization in rat liver peroxisomes and microsomes of control and cholestyramine-treated animals: quantitative biochemical and immunoelectron microscopical analyses
نویسندگان
چکیده
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key regulatory enzyme involved in cholesterol biosynthesis, has recently been reported to be present in rat liver peroxisomes (Keller, G.A., M.C. Barton, D.J. Shapiro, and S.J. Singer, 1985, Proc. Natl. Acad. Sci. USA, 82:770-774). Immunoelectron labeling of ultrathin frozen sections of normal liver, using two monoclonal antibodies to purified rat liver microsomal HMG-CoA reductase, indicated that the enzyme is present in the matrix of peroxisomes. This study is a quantitative biochemical and immunoelectron microscopical analysis of HMG-CoA reductase in rat liver peroxisomes and microsomes of normal and cholestyramine-treated animals. Cholestyramine treatment produced a six- to sevenfold increase in the specific activity of peroxisomal HMG-CoA reductase, whereas the microsomal HMG-CoA reductase specific activity increased by about twofold. Using a computer program that calculates optimal linear combinations of marker enzymes, it was determined that between 20 and 30% of the total reductase activity was located in the peroxisomes of cholestyramine-treated animals. Less than 5% of the reductase activity was present in peroxisomes under control conditions. Quantitation of the immunoelectron microscopical data was in excellent agreement with the biochemical results. After cholestyramine treatment there was an eightfold increase in the density of gold particles per peroxisome, and we estimate about a threefold increase in the labeling of the ER.
منابع مشابه
Properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase solubilized from rat liver and hepatoma.
In hepatomas, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme in cholesterol biosynthesis, is not normally suppressed by cholesterol. To examine the biochemical mechanism of this loss of feedback control of cholesterol synthesis, a comparison was made of the properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase after solubilization and partia...
متن کاملProperties of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Solubilized from Rat Liver and Hepatoma*
In hepatomas, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme in cholesterol biosynthesis, is not normally suppressed by cholesterol. To examine the biochemical mechanism of this loss of feedback control of cholesterol synthesis, a comparison was made of the properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase after solubilization and partia...
متن کاملAltered kinetic properties of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase following dietary manipulations.
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the rate-limiting step in the cholesterogenic pathway and was proposed to be composed in situ of 2 noncovalently linked subunits (Edwards, P.A., Kempner, E.S., Lan, S.-F., and Erickson, S.K. (1985) J. Biol. Chem. 260, 10278-10282). In the present report, the activities and kinetic properties of HMG-CoA red...
متن کاملCholesterol Synthesis in Rat Liver Peroxisomes
The key regulatory enzyme of cholesterol, dolichol, and isopentenyl adenosine biosynthesis, 3-hydroxy-3methylglutaryl-coenzyme A reductase (HMG-CoA reductase) is a 97-kilodalton transmembrane glycoprotein which was believed until recently to reside esclusively in the endoplasmic reticulum of mammalian cells. However, several recent publications have shown that the enzyme in liver cells is prese...
متن کاملProperties of purified rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and regulation of enzyme activity.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase from rat liver microsomes has been purified to apparent homogeneity with recoveries of approximately 50%. The enzyme obtained from rats fed a diet supplemented with cholestyramine had specific activities of approximately 21,500 nmol of NADPH oxidized/min/mg of protein. After amino acid analysis a specific activity of 31,000 nmol of NADPH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 103 شماره
صفحات -
تاریخ انتشار 1986